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SUMMARY

PRO1BLEMI

ReVieNV Mnd extenl the tlieor ' o1' comfpuitation error generation inl digital filters.
SpeCificaI 11,onidQer t'ixedL-po(in t mulitiplicat ion for digitized Gaussian analog signal inputs.

RESULTS

lDelerminist i% properties of rouind ing and chopping were examined for both ti u-
I iplicat ion and quanii u 11 errors.

St kli ic l properties of' roun1ding onl 011w ere examined folr hot h iult iplicmiton and
kliia iiii/at ion errors. Statistical properties e xain med are 1 ) the Qrror d istribu tion dens it
WAJO. i 21 1 lie er-ror variance, ,) the autocorrelatioll betwee isuccessive error values, and
4) the cross-c:orrelation coefficient bet ween the qjua ntizer input and the resulting error,
Spiic: rcsti It. wre obtained for /ero-ica n GPaussian random processes.

For tua nitizt ion e~rror, the above properties 0 1pend onily onl the ratio of the:
prlocess standakrd deviation ito thle qua nt izat ion interval size (u (1). [hle mapping of, thle
klimltdOti/er input dIAd on to thek q uattizalion error d.d. is contIinuous. C onsequlent ly. for
u) q I 1). [thec -ror d .d. ik almost exact ly u if'Orn bet ween -q I. anid the error varia ne

ik er near kI - 12. Bot ! the atocorrelation and the cross-correlation %:oefficnis wer~e
Iegile. FuLrt herniore. the eq uat ion-, hiow% thfat thle tiudilizat ion error approaches

arbit raril\ close to L-I -' as u ql inmreases. while thle autocorrelation and cioss-correlatioli
coficintsa pproach arbit rarily close to zero.

For rounding errors, the above properties depend not only onl aitL. N.11 on the
\%01rd \ize. N. audl the %aluei of thec multiplier. J . as well. F-urt hernmore. thle LI icrete nat nrc
of the% comiputecr %%ordl causes a LIise:rete mapping of the mult iplier input LI L. on to the
il tipiit...on error LI L. ( otiseluen t l. for Ofle limited range of parameters consideredl.

gh1Ost alusof .1 \ el1d ani error LI t. which i% m nt oniforni in the %conti ii-.~u bes ut

sio%% a \aria nec applroaching it 2 12. Similarlv. most jutocorrelation ad~ crows
corr'elation %alties approach zero, but stabilize at somil noni-zero value i\ v u become%



large.. However, some values of' J reSUlt in large, non-zero antocorrelation and

cross-correlation values and a variance which diverges wvidely from q-~ 12.

RECOMMENDATIONS

1. Attempt to derive analytical formulas for evaluation of' thle error variance and
the cross-correlation between thle multiplier inlpUt and the resulting error.

2. Extend thle tchnl~iqueC 01f analysis to the problem of' error g'enerationi for
floating-point com1puters.
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INTRODUC-ION

OBJECTIVE

We consider errors that occur when two fixed-point binary rumbcrs are multiplied
in a digital computer. For cxample. suppose we multiply the following numbers together.
0.0101 - and 1.1001 -. Each number has a "'word" length of N = 4 bits plus sign bit.

The result of multiplication is a nzimnber 2 x 4 = 8 bits plus sign bit, equal to
1.00101101 , in this case. To store the result in the conmputer memory it is necessary to

"'chop" or 'round" it by discarding the 4 least significant bits. Chopping results when we
discard these bits. leaving the first 4 bits plus sign unchanged. Rounding is done by add-
ing a "'one" to tile least siunific ant of the first 4 hits when the most significant of the
lower 4 bits is equal to a "'one". Then the lower 4 bits are discarded. If the most siplif-
icnt of the lower 4 bits is cqual to a "ero" nothing is added before h e lower 4 bits are
discarded. In the above example. chopping would leave the result 1.0010.,: rounding

would leave the result 1.0011 . This example and another are shown ii detail in table I,

Note that chopping or rounding results in a product that is inexact. The differenkce
between the chopled or rounded product and the original product is an error. It !' with
this error and its characteristie-s that we are conc-rncd.

Multiplication errorm must he considered in cvaluaiing the pvrformance or digital
filterm, A digital filter is an algoritlhm whith is used in a digital computer to replace an
analog filter (refcrcne 2). The algorithm is of t e form
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Table 1. Examples of Rout., ling and ('hopping.

EXAMPLE NO. 1 EXAMPLE NO. 2
NUMBER A 0.0101 0.0101
NUMBER 8 1.1001 0.1010

A TIMES B 1.00101101 0.00110010

RESULTS AFTER

ROUNDING 1.0011 0.0011
CHOPPING 1.0010 0.0011

VALUE OF ERROR

ROUNDING 1.00000011 1.00000010
CHOPPING 0. 30001101 1.00000010

,ROM EXAMPLE NO. 1

A TIMES B = 1.00101101

FOR ROUNDING: A 'MOW.' IS PRESENT IN THIS BIT POSITION.
SO WE ADO A "OE" TO THE NEXT HIGHER BIT
POSITION AND O!SCARD TE LOWER 4 BITS.
THE RESULT IS EQUAL TO 1.0011. THE SIGN
OF THE 8-81T WORD IS IGNORED IN THIS
OPERATION.

FOR CHOPPING: THE LOWER 4 BITS ARE DISCARDED.

NOTE: ALL NMMS IN THIS EXAMPLE ARE BARY.
Irt EWROR IS DEFINED AS TE QUANTITY THAT ISAOC .D TO (A TIES B) TO GET THE ROUNDED OR

OIOPPWM RESULT.



where M(nT), n = 0. I. 2, .... is a sequence of numbers obtained from the analog
waveform, R(t). This number sequence is the input to the digital filter. The resulting
output sequence from the digital filter is y(nT), n = 0, I. 2. The input sequence.
x(nT). results from periodic sampling of \M(t at a rate Is = IT. and subsequent conver-

sion of these samples to digital numbers (analog-to-digital conversion). Figure 1 is a
block diagram of the operations needed to produce a digital filter which is equivalent to
the analog filter.

Equation (I) requires three arithmetic operations: multiplication, addition. and
subtraction. Chopping or rounding errors occur only in multiplication. Overflow errors
occur in addition and subtraction.* Note also that the coefficients Ki and L i canno' be

specified exactly. in general. due to the finite word length in the computer. Consequently.
the desired (unquantized) coefficient value differs by a fixed amount from the quantized
coefficient value, and the filter does not have the characteristics desired. This may be a
problem if the filter is sensitive to small changes in the value of the coefficient. Furiher-
more, the recursive equation leads to dead-band and other effects (reference 2). We will
not discuss these effects further since we are only voncerned with the problem of
multiplication erro, generation.

This report consists of three major sections. The first section. Quantization
Errors, reviews the theory of quantization errors, which forms the foundation of the
theory of multiplication errors used until now. The second section. Multiplication Errors,
defins the deterministic and statistical properties of multiplication errors and compares
multiplication errors with qui.ntization errors. The final section, Summary. summarizes
the analysis performed in the second section and suggests an approach to furthcr analysis.

BACKGROUND

Multiplication errors are similar to errors that occur when an analog waveform
sample is quantized. It seems natural, therefore, to extend the conclusions of the analysis
of quantiration errors to ihe analysis of multiplication errors. Quantitauion errors have
been analyzcd by Bennett (reference 3), Widrow (reference 4). and Shaver (referen-ce 5).
Bennett found that qtwntiation is equivalent to adding an independent (white) noise that
is uniformly distributed over the quanti~ation interval q. to the original (unquantized)
samples," He also determined the autocorrelation of %uccesvive samples of the quantita-
tion errors as a function of the autocorrclation of succsive samples of the analog wave-
form. The analog waveform was Gaussian. Widrow determined the differenc., between
the actual variance of the quantization error and the variance of the uniformly distributed

*AH .IF W ntluSr ~WtV AI* WOO Of1440 MOus M . IS ION$ han-wV u r At Ike' sleIs wswsl Jk For r% *. 11W Ulm
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quantization error. Shaver later derived the cross-correlation between the quantizer input
and quantization error at the same instant. Both analyses were for a Gaussian analog
waveform.

As we shall see, chopping and rounding are exactly the same operation for multi-
plication errors as for quantization errors. This has been noted in work on the effects of
multiplication errors in digital computation. For example, Knowles and Edwards (refer-
ences 6, 7, 8) assumed that multiplication errors could be treated as an additive, independ-
ent white noise because they are similar to quantization errors. They analyzed the effects
of this noise on the steady-state performance of digital coutrol systems of the form given
in Equation (1). As a chec on their :.ssumptions, they computed the autocorrelation
functions of some multiplication error sequences (reference 6, p. 2384). A number of
word lengths, mtltiplicatio: coefficients, and sampled analog waveforms were used. They
concluded that multiplication roundoff error spectra are essentially white with respect to
practical sampled-data systems. Unfortunately, the paper was not clear as to what kiud
of sampled-data system was used for the measurements. Also, the rms value of the analog
signal relative to the quantization interval was not given.

Gold and Rader (:'eference 9) also linked quantization errors with multiplication
errors, referring to the work of Bennett. They experimentally verified the mean-square
output noise for a one-pole digital filter as a function of the pole positionl and word
length (28 and 29 bits including sign). They did not compute correlation of successive
output errors, nor give the rms value of the analog signal. Gold and Rabiner (reference
10) essentially followed Gold and Rader in their assumptions.

All investigators experimentally verified the assumed similarity of quantization
errors to multiplication errors by measuring the mean square output noise of a finite word-
length digital filter. Only Knowles and Edwards (reference 6) computed correlation of
error sequences, and did so for specific systems and specific word sizes only.

QUANTIZATION ERRORS

Later in this report w. will compare the statistical properties of quantization
errors with those of multiplication errors. This section is a review of theoretical results
needed for such a comparison.

QUANTIZER CHARACTERISTICS: DETERMINISTIC

A quantizer is used in an analog-to-digital converter (ADCON). An AI)C'ON con-
verts time series samples of an analog signal to digital form so they can be ac,:cpted by a
digital computer. A block diagram of the process is shown in figure 2. The block dia-
gram does not represent the circuit operations, but shows the equivalent operations in a
mathematical sense. We will discuss quantization first and then cover the other necessary
aspects of the ADCON.
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In figure 2 the sampler output voltage x*(nT) is a randol variable whose
probability density function is continuous in the interval -B < x *(nT) A. -I3 and A
are lower and upper limits on the range of x*(nT) which are set by the physical nature
of the sampler and quantizer.

Quantization is a process of subdivision of the range of x *(nT) into class intervals.
For rounding,

(i- -)q < x *(nT) < (i + l)q, (2)

where

B, B A A
i=-- -+ .... -1,0,1 .1,

q' q q q

(A and B are chosen to be integer multiples of q).

Each class interval is of equal width q. The quantizer output voltage is iq. This
is the center value of the class interval. For example, if (3/2)q < x *(nT) < (5/2)q, the
quantizer output is 2q volts.

The difference between the quantizer output x'(nT) and the input x*(nT)
is the quantization error eq(nfT).

That is,

eq(nfT) = x'(nT) - x*(nT). (3)

(Sometimes the error is defined as the input minus the output. Our convention assumes
that the quantization error is added to the quantizer input.) In the case of equation (2)
this represents a rounding error since the input samples x*(nT) are rounded to the nc r-
est class interval center value. We will call the sequence of errors eq(if), n 0 , 1, 2.

quantization noise or the quantization process. Note that Ieq(nT)j < q/2.

For chopping,

iq < I x*(nT)I < (i + l)q, (4)

where

i=0, 1... A/q.



The qu1.antizer output voltage is (sgnx *)jql, where

Sgx * -1(5)
1-1. x* < 0,

and igI is the value of' the lower end of the class interval defined in equation (4). The
sign of the quantizer output voltage is the same as the sign of x*(nIT). For example, if
3q < I x *(nT)f < 4q and x *(ilT) < 0, the quantizer output is -3q volts. Note that
eq (nTHj < q.

Quantizer input/out *ut characteristics for both rounding and chopping are shown
inl figure 3. The equivalent ADCON outputs are also shown. The quantization error is a
determiinistic function of the quantizer input. The functions can be written as follows:

Rounding:

e (inT)I x =x* + iq, (6)

where

= 0, ± 1, ±2,..f

and

-q2 eq(nT)l x K (1/2.

(Chopping:

i( 0, 2,(1T x 0

e q(iT) I x ~x* + iq i0-1 2 x*40(7)

0 < eq(I1T)lI < q.

These functions are shown inl figure 4.
Figure 5 is anl examnple of an analog signal and the results of sampling and quaniti-

zation. Results for both rounding and chopping are shown. A couple of features are
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evident. First, the chopping errors are generally larger than the rounding errors. The
rounding-error sequence is bounded by ±q/2 and the chopping error sequence bounded by
±q. Second, the chopping-error sequence is quasi-periodic and dependent on the polarity
of the analog signal input. The quasi periodicity can be eliminated by adding a d.c. level
to the analog signal. This results in a d.c. bias in the error sequence, though.

Analog-to-digital conversion results in a binary number, not an analog voltage.
The placement of a binary point in this number is not relevant as far as ADCON operation
is concerned. It becomes important to the user because scaling is necessary in order to
interpret the ADCON number properly. For our purpose we will assume a leading binary
point. Then, if thL quantizer output voltage is x'(nT) = iq, where i = ... -1,0, +1, ..., the

corresponding ADCON output is just x(nT) = i2- N. There is a multiplicative relation oi

between x'nT) and x(nT). That is. x(nT) = ax'(nT). If x'(nT) = q, then x(nT) = 2- N .

Thus, = 2-N( - 1. This scale factor is included in figure 2. Note that the size of the least
significant bit at the ADCON output is equivalent to q when referred back to the ADCON
input.

QUANTIZER CHARACTERISTICS: STATISTICAL

We will consider the following questions about the statistical characteristics of quan-
tization errors and quantization error sequences:

I. What shape does the quantization error distribution density (d.d.) have?
2. What are the mean and variance of quantization errors'
3. What conditions must apply for the error sequence to be considered a source of

white noise?
4. What :onditions must apply for the error sequence to be uncorrelated with the

signal sequence?

Distribution Densities of Quantization Errors

We will show how the quantizer input d.d. determines the quantization error d.d.
For rounding, the prob.-bility that the quantizer output is equal to iq is

e W P( i~ rob {'it]

= Prob - 2)q< x* < + . q

= _(i+;2p2

12~x) x



where p, *( x *) is the d.d. of the quantizer input. The argument of tile random variable

x* (the sequence index nT) is omitted since the sequence is assumed stationary.
The joint d.d. of the quantizer input x * and the quantizer error eq is

PC q X,(eq,X*) = Pe qlx,!eql x*)PxI X*)

= 5j (eq - liq - x*I)px*x*).

where -1/2 < eq < q/2 and 6( x) is a delta function. We define 6( x) as a distribution

which assigns to a continuous function O(t) the number O(o). That is. we use the special
integral definition (reference 11. pp. 269-282)

f6(t)#t dt= (o).

We assign infinite limits to the summation for the sake of simplicity. In reality the limits
arc given by equation (2).

The d.d. of the quantizer error is then

Peq(I = f Peq X,(Uq.X*1 dx*

ate q - I x *I p J, dx*

11
"~ & -54 I) x op tx*) dX"

x * 1., p liq - e 4 . "q'- r 4< 110. l 1



For chopping. the probability that the quantizer output is equal to iq is
i+l )q x* > 0

px,(x*) dx*

j i =0.1....

Px (iq) =(11)

'q x*< 0

S Px,*(x*) dx*.

The joint d.d. of x* and eq is

CO

Peq x*(eq ,x*) = E 6(eq - {iq - x*I)px*(x*)

i=O

-q<e <0O
qx izq

+ E Me q - iiq - x*)Px*(X)'i. (12)

i0
x*<O

(See equation 7) 0Xeq<q

Th' same procedure yields the following d.d. of the quantization error.

Pe q e q) = O iq -e +) pxiq -- eq).
Pi(q = i=0

-q<eq<O O<Eq<q

(We ignore the terms for e. a 0. They have the effect of introducing a delta function in

the dd, for eq. This is because of the limits on eq imposed by equations (2) and (4),

We could have chown the limits so that the d.d. for eq is continuous at tq a 0. but this

would have further complicated the greientation.)
Equations (10) and (13) show that the quantization error d.d. results from a

mapping of the quatiixr input dd,, The mapping equations are (6) and (7). The nature
of the mapping is illustrated in figures 6 and 7. Each figure shows the following d.d.'s;
quantixer input. quantizer output. quantization error, and the joint d.d. of the quantizer
input and the quantization error. A zeromean Gausian d.d. is shown for the quantizer

input, 0,q I. where o is the variance of the d.d..

14
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The error d.d. for chopping is wider than that for rounding. Also. the error d.d.
is definitely not uniform for chopping, but is for rounding. The d.d. for rounding is actu-
all% not uniform, but is so nearly uniform that the graph scale won't Ehow the variations. The
d.d. for chopping will become more uniform as a/q is increased. However, the quantiza-
tion error will always be negatively correlated with the qpiantizer input. We consider only
rounding from now on, except when we look at multiplication errors.

Widrow's Results

The following quotation is from a summary in reference 12 by Widrow (see also
reference 4).

The probability density of a quantizer output signal is discrete, consisting
of a series of '.iformly separated impulses with spacing equal to the quan-
tization box size q. This density has a characteristic Jiction (Fourier
transfbrm) which is periodic with a 'frequency" 0 = 27r/q. A comparison
of quantization with the addition of an independent uniforinly-distribi ted
(between i1q/2) noise shows that the quantizer output distribution density
consists of samples of the distribution density of signal plus noise. Satis-
fut-ion of a quantizing theorem ensures that statistics can be recovered
from quantized samples and that quantization noise itself is precisely flat-
topped distributed. The quantization of high-order (correlated) signals
compares with the addition of first-order noise (statistically independent,
white). When a multidimensional quantizing theorem is satisfied, quantiza-
tion noise is first-order and uncorrelated even though signals may be highlycorrelated

The quantizing theorem referred to says essentially the following: suppose the
"frequency" 0 = 27r/q is twice as high as the "highest frequency component" contained
in the shape of the quantizer input d.d. px*(x*). It is then possible to recover px*( x*)

from the quantizer output d.d. px,(iq).

In most cases the theorem is not completely satisfied. The quantization error is
then only approximately uniformly distributed between +q!2. The quantization error
variance will be in error by some amount. Widrow obtained a formula for the error of
the quantization error. This was for a zero-mean Gaussian quantizer input. Rounding
only was treated. The error is, to a close approximation,

(12 
(

2 2exp(-2'2 2iq 2)(2+-2 2J) (14)
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The proportion error is

ep

61 = I._q-/12

=1 q2-- exp (-2r 2 a2 /q' 2  a 2 272 (15)

This equation is a monotonic decreasing function of a/q. For example, the proportion

error for o/q = 1.0 is e' < 1.5 X 10- .a very small number. This means that the quan-

tization error d.d. is almost uniform for a low value of a/q.

Bennett's Results

Bennett (reference 3' discussed the distortion effect of sampling and quantization
on analog waveforms. One of his results is the following (reference 3, p. 455).

Distortion caused by quantizing errors produces much the same sort of'
effects as an independent source of" noise. The reason for this is that the
spectrum of the distortion in the receiving filter output is practically
independent of that of the signal over a wide range of signal magnitudes.
Even when the signal is weak so that only a few quantizing steps are
operated there is usually enough residual noise on actual systems to
determine the quantizing noise and mask the relation between it and the
signal.
Bennett obtained a lengthy formula for the autocorrelation of the quantization

errors as a function of the autocorrelation of the analog waveforfi. This was for a zero-
mean Gaussian quantizer input. He reduced the formula to an accurate approximation
which we reproduce here (reference 3, p. 467, equation (2.26)). The notation is changed
to conform to this report.

Reqe() 2 1 12 2
q-q m 4m 27r2(l-rx ~xr)) (16)

R x *x*(O) U 2 27r2 1- x 2 q2~*( ))

Now,

Re qeq() = R qeq()re qeq(r)

q2 rC(), (17)1 2 eqeqT
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and

Rx~x,(O) = o.

(W"y (r) is defined as E I x(t)y(t + r)t

and

r(Rr) x(r)
xy VRxx(O)Ryy(O)

E is the expectation operator.) Substituting these expressions into equation (16) we get

00 

).r - exp ( 4n27r I-2( ,rX*X*(T)) 4 ).
q q nq= m- q

This equation is a monotonic decreasing function of r x*x *(r). It is shown plotted in

figure 8 for o/q = 1/3, 1/2 and 1.0. Based on this equation, the quantization error
sequence can be considered a source of white noise for values of o/q close to 1.0 and for
quantizer input correlation coefficient values of 0.9 or less. Of course, the higher /q
becomes, the higher the quantizer input correlation coefficient can be for the white noise
assumption to hold.

Shaver's Results

Shaver (reference 5, pp. 7-8) derived an expression for the cross-correlation
between the quantizer input and the quantization error at the same instant. Since the
reference is not widely available, we will reproduce the derivation. (This will be done for
zero-mean Gaussian processes and rounding.)

The cross-correlation may be written

Req x*(0) =E Eq X*1

x*pE *) deq dx*. (19)

--q/2 q p x*
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I Substituting equation (9) into the above, we get:

Req *(O) j X~ q/2 U [ 6( q -q X1)d1P x*(x*) dx*

- X*e qPx*(x*) dx*. (20)

The relationship between the quantization error and the quantizer input is givenl
by equation (6). The quantization error function may be writ jen as a Fourier series in X*,

(x*) 0 (-1 27rk x ()

k=1q

Substituting equation (21) into equation (20), we get

00 07k

*(0) x i x (*22
Reqx*(O)~~ ~ P*(x*) dx*. 22

qk=1 kSn

If we consider a zero-mean Gaussian quantizer inlput with variance u2 equation
(22) reduces to

00

Re q x*O 2u2 F(-I k ex r2 (.) 2 . (23)
k=I

The cross-correlation coei ficient is:

Re x *(O)

le *(0)~ (24)

Since R Eq eq (0) q2 /12, an~d Rx*x*(O) 02a. we obtain

r * 0*(O : 4 00- ~ jk CX~ 2)](5r (3 x[21-(5

eq x 4k=I2(



If a > q, a good approximation is

reqx(0) = -4 -3 exp -21r2 . (26)

This equation. like equation (15), decays extremely rapidly for u > q. Thus, the quan-
tization error sequence is essentially uncorrelated with the quantizer input sequence for
a> q.

MULTIPLICATION ERRORS

MULTIPLIER CHARACTERISTICS: DETERMINISTIC

The model we use for a multiplier is shown in figure 9. The multiplier input
sequence x(nT), the multiplication constant J, and the multiplication output sequence
y(nT) are all in the form of binary words of length N bits plus sign. Remember that
y(nT) results from rounding or chopping the product x(nT) times J, which is 2N bits plus
sign. The error sequence e (nT) rpresents the fictitious number sequence that would be

added to the product x(nT) times J in order to produce y(nT).
Table 2 shows the rounding and chopping errors for all possible combinations of

x (nT) and J, and a word length of N = 2 bits plus sign. Note that the errors for J < 0
are opposite in sign from the errors for J > 0. This occurs in general for N > 2 as well.
We will only consider results for . > 0 from now on. More importantly, given a particu-
lar value of x(nT). the value of the error depends on the value of the multiplication con-
stant J. We have more to say about this after the next paragraph.

The number of values that the errors can take on depends on the word length.
The number of values is:

Rounding: 2N + I

Chopping: 2N+ I _I
We will use the case of table 2 as an example. We enumerate all possible errors

in table 3. The number of error values are: rounding. 5: chopping. 7. Note the bounds
on the errors. The rounding errors are bounded by * one half the least significant bit
(I.s.b.) in the (N + 1) bit computer word. Similarly, chopping errors are bounded by
i one I.s.b.. Previously, we showed that one I.s.b. was equivalent to the basic quantiza-
tion interval q Thus, if we refer the scale of the multiplication error back to the quan-
tizer input. th, ')ounds on the multiplication error are the same as for the quantization
error. This is why the error values are shown as an equivalent voltage referred to the
quantizer input. This is the way we will show multiplication error magnitudes in the rest
of this report. The value of N we use at any time is reflected in the denominator of the

fractions that are used. That is. the denominator is equal to , N
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Table 3. Enumeration of all possible multiplication errors.
N = 2 bits plus sign.

ERROR VALUE

EQUIVALENT VOLTAGE
BINARY REFERRED TO
NUMBER QUANTIZER INPUT

2
ROUND ING: 0.0010 2 q

4

0.0001 1 q

40.0000 0 IE Ij q
c 2

1.0001 -1 q
2

1.0010 2 q

3
CHOPPING: 0.0011 q

~2
0.0010

0.0001 1 q

0.0000 0 Ic I < q
I

1.0001 q
2

1.0010 2 q

1.0011 q

1 4
POSITION OF LEAST SIGNIFICANT
BIT FOR A 2-B8T WORD LENGTH



In figure 4 we showed a quantization error function which was related to the
quantizer input. It represented a mapping of the quantizer input d.d. onto the quantiza-
tion error d.d. We will do the same here for multiplication errors. That is, we will con-
struct mappings of the multiplier input d.d. onto the multiplication error d.d. Data of
the form used in table 2 were used for figures 10 and 11. Figure 10 shows representative
chopping error patterns for word lengths of N = 2, 3. and 4 bits plus sign. (All possible
values of J are not shown). All possible values of the multiplier input are arranged along
the horizontal axis. The value of the resulting multiplication error is plotted against the
vertical axis. Each plot is for a particular value of J. Figure I I is similar to 10; the
main difference is that rounding error patterns are shown. In both cases, the error pat-
tern is simply a mapping of the multiplier input value inte a corresponding multiplier
error value.

We compare figures 10 and I I with figure 4. One basic dissimilarity occurs
because the multiplier input is a discrete quantity and the quantizer input contirtuous. If
the quantizer input were discrete (in a sense, prequantized to a finer quantization interval)
we would observe an error pattern similar to that for the multiplier. However, the multi-
plication error pattern also depends on the value of the multiplier, J. The similarity
between quantization and multiplication is that the error bounds are the same: ±q/2 for
rounding and ±q for chopping.

There is one special feature illustrated in figure 10 which we will use in our sta-
tistical analysis of multiplication errors. Look at the three plots starting with (N = 2,
J = 1/4) on the left and ending with (N = 4, J = 4/16) on the right. The plot pattern
for N = 2 is a basic pattern for longer word lengths. That is, the pattern for x = 0. 1/4,
2/4. 3/4, (N = 2) is the same pattern for x = 0, 1/8, 2/8, 3/8 (N = 3) and for x = 4/8,
5/8, 6/8. 7/8, (N = 3). Similarly, the pattern for x = 0. -1/4, -2/4, -3/4 (N = 2) is the
same pattern for x = 0, -1/8. -2/8, -3/8, (N = 3) and for x = -4/8, -5/8, -6/8, -7/8
(N = 3). This same effect occurs when we go to a word length of 4 bits. The basic pat-
tern is reprated a total of 4 times each for x >' 0 and x < 0. We conclude from the
figure that most error patterns are based on basic patterns. For example, suppose
J = 2/16 iN = 4). We can reduce this fraction to the value 1/8 and no further. The
shortest word length we can use to represent this fraction is N = 3. Thus. the basic error
pattern is generated for (U - V8, N a 3). And the error pattern for (J a 1/16. N = 4) is
a copy of this repeated according to the above procedure. The patterns in figure 1I
show this samt effect.

Figure 12 shows an example of a multiplier input sequence and the corresponding
output and error sequences. This is similar to figure S, the comments made for rigure S
also apply herc (see p. 8). In addition, note that the result of multiplication before
rounding or chopping will be less than the value of the input to the multiplier. This
result dependi. on the value or J. The bounds on the multiplication error remain the
same. This is to be €ontr~sed with the quantizer where no operation is performed on
the voltage belort the quantization error is introduced.
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DISTRIBUTION DENSITIES OF MULTIPLIER ERRORS

Figure 13 is an example of marginal ind joint d.d.'s for a multiplier input and the
resulting multiplication error. Chopping is shown. Figure 14 is the same except that
rounding is shown. TIhe multiplier input d.d. was derived from a zero-mean Gaussian
input to a quantizer. Rounding is assumed for the quantizer. The ratio of the standard
deviation to the quantization interval u!q was 4.0. N = 4 and J = 3/16. It is clear how
the multiplier input d.d. is mapped onto the multiplier error d.d. by the error pattern.
The limits on the multiplication erro- values are obvious in both figures. Also note that
the multiplication error d.d. is strongly correlated with the multiplier input d.d. We will
drop consideration of chopping errors at this point.

Figure 15 shows a variety of multiplication error d.d.'s. for the same multiplier
input d.d. as used for figures 13 and 14. Rounding is assumed. In some cases, the d.d.'s
are approximately uniformly distributed. In other cases they are not. The dependence
on the value of J is clear. These figures illustrate fvrther the dissimilarity between mul-
tiplication errors and quantization errors.

ROUNDING ERRORS: STATISTICAL

Model For Computer Analysis

Consider equation 1. If x(nT) is a zero-mean Gaussian random process, y(nT) is
also a zero-mean Gaussian random process. We will show this by an example using a
first-order linear difference equation:

y(nT) = Ky(nT - T) - x(nT) n = 0, 1, 2, ... (27)

The first value of x(nt) is x(o). We define y(-T) = 0. Then y(o) -x(o). Carrying out
the above equation a number of times, we find that

y(nT) .Kn-i( - x (iT)), (28)

y(nT) consists of a linear, weighted sum of Gaussian random variables. This implies that

y(nT) too is a Gaussian random variable. Also, since

El x (nT)1 0, E[ynT)I = 0.

We can use this same procedure for other forms of equation 1. All of this
assumes that quantization and computation errors are not present. We have shown that
quantization of a Gaussian random variable results in a discrete d.d. which is approximately
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Gaussian in appearance. We will assume this same d.d. for the input and output of a
digital filter. The output d.d. will only be approximate due to the addition of computa-
tional errors. Thus, in equation (1), the x(nT) and y(nT) are assumed to be governed by
the same d.d. That is, they are the result of quantizing (with rounding) a Gaussian
sequence of random variables. With these assumptions we simplify our analysis model to
that shown in figure 9.

The analyses described below have been programmed and run on a CDC 1604
computer.

Multiplication Error Variance

The variance of the computation error was computed as

Var(ec) = E[(ec - kc)1

- ei Px,(iq). (29)

The variance depends on the following parameters: J, N, and u/q. eci is the computation

error that results when the multiplier input is equal to i2-N . (Remember that the deci-

mal form of the ADCON output is i2-N when the quantizer input is in the interval
(iq q/2).) As we have shown, the value of eci depends on the value of J.

The variance was computed for the following parameters: N = 7; J = i2

(i = 1, 2 __ 27 - ): /q = 2.0, 4.0, 8.0, 16.0. Results are shown in figure 16. The
variance for a uniformly distributed error is shown as a horizontal line in the center of
the graphs. The interval of ± 10 percent of this value is also shown.

The first graph is for o/q = 2.0. Except for a small range of values for
J - 32/128, 64/128, and 96/128 most of the values of error variance fall outside the 10 per-
cent interval. For comparison, the proportional error in the variance of the quantizing error

for o/q = 1.0 is about one part in 107. So, we see that the performance of the compu-
tation error variance is very much worse than that of the quantizing error variance. As
o/q is increased, the computation error variance converges to the value of a uniformly

istributed error for most values of J. For certain values of J the error variance con-
verges to some other value. (See values for J = 16/128, 32/188 .... 112/128.)

The data points in figure 16 are shown connected for ease in visualization. Ths
does not imply that we are safe in interpolating variance values for N > 7 and values of J
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that arc representable only for N > 7. For example, we could have plotted variances for
N = 6. Then, the two downward spikes at J = 43/128 and J = 85/128 would not have
been indicated.

There is an upper limit to the standard deviation allowable for the input to a mul-
tiplier. This limit is set by the size of N, and is imposed at two points. The first

is the input to the quantizer. If the quantizer input exceeds ( 2 N - I/2)q volts overload-
ing occurs. The second point is the output of the digital filter represented by equation
(). It is possible for the sum of all the terms to be too big for the word size (>1 .0 in
this case). (That is, overflow occurs.) In the practical case, we can limit the standard
deviation so that quantizer overloading or register overflow will occur infrequently. A
good value for the standard deviation is one-fourth the voltage which is equivalent to the
maximum size of the word. The probability of overloading in either the positive or

negative sense is then about 6.33 X 10- 5. In figure 16, the maximum value of a/q that
can be accommodated for N = 4 is a/q = 4.0. Other maximum values are N = 5,
oiq = 8.0: N = 6, o/q = 16.0: N = 7, o/q = 32.0: etc. We call these limits on u/q the 4o
load limits.

Autocorrelation Computations

The autocorrelation coefficient for two successive computation errors is

E Iec( n iT)ec( n -T)-
r6  (T)=

c c Eje(n T)l

,N-I 2N-I

E E eciecPx x, (iqjq)
i=-2N+lI j=-2N+ II In il(0

EcciPx,(iq)

i=-2N+l

where

Px1 X,(iljq) = Prob{x'(n IT) i , x'(nT) = j(

= Prob (i-1)q< x*(nlT 14 (i + })q,(j.-!)q < x*(n2T)4 (j +I}q

= I x ,x,(x*(nlT), x*(n2T))dx*(nT) dx*(lnT).
Jhi-l'2kq J(j-2-I)q

(31)
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and Px*x(*( 0nlT), x*(n2T)) is a bivariate Gaussian d.d. with autocorrelation

rx* x*(T). Px' x'(iq, jq) was obtained numerically using Simpson's rul,.'. f Note that the

results described are for a given autocorrelation value of the quantizer input. not the mul-
tiplier input.)

The autocorrelation coefficient was computed for the following parameters:

N =6: J = i 2- N (i = 1,2 .... 26_ I.uq= 1. 1 .... 6: rx* x*T = 0.9. r Cf1r)is

plotted as a function of J in figure 17. Here too. the data points are shown connected
for visual effect only. (Results for o/q > 6.0 were not obtained due to the amount ol
computer time needed.

The values are also much higher than the value of the quantizing error correlation
coetficient for a/q = 1.0 see figure 8: when r xx* = 0.9. rq .0117). In figure .

for o/q = 6.0, only two values of J(13/64 and 51 '64) yield a lower value. Other values
of J yield lower values for o/q < 6.0. But the computation error correlation coefficient
later comes back up when o/q = 6.0. The coefficient values seem to stabilize for
J = 16/64, 32/64 and 48/64 for even this restricted range of o'q. Unfortunatelv. Since
we do not have data for o/q > 6.0. we can only speculate that the correlation coefficient
will be low enough for most cases of interest. It is not low enough. for the most part.
when o/q < 4.0, nor for N < 4 when the 4o load limits are taken into account.

Cross-Correlation Coefficient

The cross-correlation coefficient between the multiplier input xlnT) and the
resulting multiplier error e (nT) at the same instant is

rex(O) r.cX,(O)

E I x'( nT)k,(nT)I

VEItxh(nT)I2 Ejfe,(nT)I 2 j

iN

N , 2i q
i 2P iti+ 1 '

i04 

in-xqq I .o t
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The cross-correlation coelficient was computed for the following parameters:

N 6:J = i2-N (i = 1,2 .... 26- I): o/q =  . 2 .... 30. Its behavior as a function of
o/q is evident in figure 18.

Each curve iends to vary wildly starting with o/q = 1.0. Then. it settles down to
some non-zero positive value. The reason for the positive value can be traced to the
appearance of the error patterns in figure 11 . When x > 0. the mapping onto eC occurs

for mcre positive values of ec than negative valtes. When x < 0. the mapping occurs for

more negative values of ec than for positive values. Each curve settles more quickly for

those values of J that are represcnable for N < 6. J 32'64 is the most extreme
example. Next conies J = 16/64 and 48/64. Then. J = 864. 2464, 4064 and 56'64.
and so on. Values of J representable only for N ;, 6 seem to have [he least tendency to
settle down in the range shown for o/q. This behavior is correlated with the behavior of
the multiplication error variance as a function of o q.

Tl', rate of settling down seems to be inversely correlated with the final non-zero
value of the cross-correlation coefficient. That is. the faster it settles down. the farther
from zero it stays as 01(i becomes large.

Generalization of these results for N > 6 is not always sfe. Figure I) shows
why. It is a plot of the cross-correlation coefficient as a function of J for Ojq = 30.0.
The plot is in two palts. The top part is for values of J that are representable for both
N = 6 and 7. The bottom part is for only those values of' J that are representable for
N = 7. The top is uniform in appearance. But. it is obvious that pitfalls occur if we try
to extrapolate performance for N > 6 for numbers that are only representable for N > 6.
The bottom paiI shows additional variations that are not riredictable by looking at the
top part. They are also significantly non-zero in some cases when we consider
that o/q = 30.0 is very close to the 4o load limit for n = 7. Incidentally. the spikes that
occur for J = 43/128 and J = 85/128 are at the same position as the downward spikes in
figure 16 for o!q = 16.0.
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SUMMARY

We have examined the following statistical properties of quantization and
multiplication rounding errors:

1. d.d. of the error,
2. variance of the error,
3. autocorrelation coefficient between successive error values, and
4. cross-correlation coefficient between the quantizer or multiplier input with

the resulting errors.
Specific results were obtained for zero-mean Gaussian random processes as follows.

QUANTIZATION ERRORS

The statistics of quantization errors depend only on the ratio of the process
standard deviation to the quantization interval size (,,q). The mapping of the quantizer
input d.d. onto the quantization error d.d. is continuous. Consequently, for o!q > 1.0.
the error d.d. is almost exactly uniform between ±q/2, and the error variance is very near

q2/12. Both the autocorrelation and the cross-correlation coefficients were negligible.
Furthermore, the equations show that the quantization error approaches arbitrarily close

to q2/12 as a/q increases, while the autocorrelation and cross-correlation coefficients
approach arbitrarily close to zero.

MULTIPLICATION ROUNDING ERRORS

For rounding errors, the above properties depend not only on a/q, but on the
word size, N, and the value of the multiplier, J, as well. Furthermore, the discrete nature
of the computer word causes a discrete mapping of the multiplier input d.d. onto the
multiplication error d.d. Consequently, for the limited range of parameters considered,
most values of J yield an e'rror d.d. which is not uniform in the continuous sense but

shows a variance approaching q2/ 1 2. Similarly, most autocorrelation and cross-
correlation values approach zero, but stabilize at some non-zero value as u/q becomes
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large. However, some values of J result in large, non-zero autocorrelation and

cross-correlation values and a variance which diverges widely from q2/12.

Shortcomings of Present Analysis

It should be remembered that the results are based on data obtained for digital
words of size N < 7 bits plus sign bit. We have not considered the possibility of round-
ing off fewer bits leaving a result of multiplication which is greater in size than the multi-
plier input word size. Neither have we obtained data for word sizes greater than 8 bits.
Operation with word sizes greater than 8 bits is of interest due to the increased availa-
bility of process control computers in the 12- and 16-bit word-size range. (11 bits plus
sign and 15 bits plus sign.)

An Approach to Further Analysis

Since generalization of the results of this paper to word sizes greater than 8 bits
has its shortcomings, we suggest the following approach. First, assume ideal multiplica-
tion error statistics (shape of d.d., variance size, and auto- and cross-correlation coeffi-
cients) for the analysis of the effect of multiplication errors. Analysis approaches are
worked out in reference 2. Once the preliminary design is fixed, perform a Monte Carlo
simulation of the digital filter in a digital computer. Then compute the error d.d., the
error variance, and auto- and cross-correlation coefficients for each multiplier coefficient
in the filter. Do this for a representative set of filter input sequences. (Sequences of
correlated Gaussian random variables are easily generated using computer programs.) If
the results for a multiplier coefficient are bad, it may be possible to get good results by
using a siightly different coefficient value. Of course, the change in filter characteristics
would have to be acceptable.
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LIST OF SYMIBOLS

A,-B uipper and lower limits (volts) of tile sampler and qiiantizer

a' a 11ul1tiplicative relation between x'nT) and x(nT)

SWx': the delta function

Y~nT): multiplication error sequence

ec.(ifT): the mul1tiplication error that re-sults when the multiplier input is equal to

i2~

e OuT): quantization error sequenceq

E error of the variance of the qiiantization error

e ,: proportional error of' the variance of the quantization error

f5: sampling frequency

Ki, Li: digital filter coefficients.

N: the number of bits in a digital word iexcludin.- thle sign bit)

0: "frequency"

0(t): any continuous function

q: the size otf the basic quantization interval (volts)

R (7): thle cross-correlation between any two random variables x and y. the auto-
xy correlation of x when y =x

r (): the cross-correlation coefficient between any two random variables x and v
xy the autocorrelation coefficient of x when =x
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17-: the variance of a (Gaussian) d.d.

T: the time interval between analog waveform samples and numbers of a
number sequence

x( t): analog waveform

x*(uT): analog waveform sampler output sequence

x (uT): ADCON output sequence: the input sequence to a digital filter

x'(nT): quantizer output sequence

y(nT): digital filter output sequence

SPECIAL TERMS

ADCON: analog-to-digital converter

cldd' (probability) distribution density

1.s.b.: least significant bit
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